Diytterbium Decavanadate 24-Hydrate, $\mathbf{Y b}_{2} \mathbf{V}_{10} \mathbf{O}_{\mathbf{2 8}} \mathbf{2 4} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

By B. E. Rivero,* G. Punte \dagger and G. Rigotti*
Departamento de Física, Facultad de Ciencias Exactas, UNLP, CC 67, La Plata-1900, Argentina

and A. Navaza
Faculté de Pharmacie, 92 Châtenay-Malabry, France

(Received 4 January 1984; accepted 7 December 1984)

Abstract

M_{r}=1735.85\), triclinic, $P \overline{1}, a=9.287$ (5), $b=9.821$ (5), $\quad c=23.33$ (2) $\AA, \quad \alpha=99.13$ (15), $\quad \beta=$ 81.51 (15), $\gamma=90.57(4)^{\circ}, \quad V=2077$ (3) $\AA^{3}, \quad Z=2$, $D_{m}=2.7, D_{x}=2.77 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.7107 \AA$, $\mu=6.3 \mathrm{~mm}^{-1}, \quad F(000)=1668, \quad T=298 \pm 2 \mathrm{~K}, \quad R=$ 4.4% for 4559 independent observed reflections. The unit cell contains two independent $\left(\mathrm{V}_{10} \mathrm{O}_{28}\right)^{6-}$ anions located on symmetry centers and four $\left[\mathrm{Yb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}$ polyhedra. The $\mathrm{V}-\mathrm{O}$ distances within the polyanions range between 1.578 (4) and 2.346 (5) \AA. The coordination geometry at Yb^{3+} ions is a distorted square antiprism with $\mathrm{Yb}-$ water-O distances ranging between 2.255 (6) and 2.428 (7) \AA. The 16 interstitial water molecules are inserted between layers parallel to (001) containing decavanadate groups and rare-earth polyhedra which are not in direct contact. A net of hydrogen bonds stabilizes the structure.

Introduction. Crystallographic studies on hydrated rare-earth decavanadates were undertaken as part of a more general research program on crystal chemistry and physicochemical properties of decavanadate salts (Rigotti, Punte, Rivero, Escobar \& Baran, 1981). The structures of the 25 -hydrate rare-earth salts (Rivero, Rigotti, Punte \& Navaza, 1982, 1984) and that of the 24-hydrate compound presented here were solved in order to correlate structural changes with ionic-radius size and with the different number of water molecules of crystallization.

Experimental. $\mathrm{Yb}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 24 \mathrm{H}_{2} \mathrm{O}$, isostructural with $\mathrm{Ln}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{Ln}=\mathrm{Lu}, \mathrm{Tm}$), synthesized according to the method described in a previous paper (Rigotti et al., 1981) and kindly supplied by Dr E. J. Baran and co-workers, Area de Química Inorgánica, UNLP, Argentina; density measured pyenometrically. Brightorange platelet crystal used for data collection, defined by the following planes (numbers in parentheses are the distances in mm from the crystal faces to an arbitrary

[^0]0108-2701/85/060817-04\$01.50
origin inside the crystal): $\pm(001)(0 \cdot 21), \pm(\overline{1} 12)(0 \cdot 16)$, $\pm(1 \overline{1} 2)(0 \cdot 18)$ and $\pm(110)(0 \cdot 11)$. Cell dimensions by least-squares refinement of 25 reflections ($17<\theta<$ 2°) on an Enraf-Nonius CAD-4 diffractometer, Mo $K \alpha$ radiation, graphite monochromator. $\omega / 2 \theta$ scan (max. time 60 s$), \omega=(1+0.34 \tan \theta)^{\circ}$, aperture $(1+$ $0.8 \tan \theta) \mathrm{mm}$. A hemisphere of data ($h 0-10$, $k \overline{10}-10, \quad l \overline{25}-25)$ was collected to a limit of $\sin \theta / \lambda=0.5947 \AA^{-1}$, which resulted in 4743 unique reflections, of which 4559 were observed with $I>4 \sigma(I)$. No systematic absences and $\left\langle E^{2}-1\right\rangle$ statistic together with the Laue symmetry indicated space group $P \overline{1}$. Three standard reflections, $2 \cdot 6 \%$ intensity variation. Intensities corrected for Lorentz and polarization effects; an absorption correction based on the equation of the crystal faces was applied to all observations, max. and min . corrections: 2.045 and 1.252 for $10 \overline{1}$ and $7,17,6$ respectively. Positions of two independent Yb^{3+} ions obtained from a Patterson map; remaining nonhydrogen atoms from subsequent electron-density synthesis. Structure refined, with seven data per independent parameter, by block-diagonal least-squares method on $|F|$ and anisotropic thermal parameters to $R=4.4 \%$ and $w R=5.4 \%$; weighting scheme: $1 /\left[\sigma^{2}(F)\right.$ $\left.+0.0074 F^{2}\right]$. Max. ratio of LS shift to error 0.38 , average ratio of LS shift to error 0.02 ; final difference map shows max. and min. heights of 0.89 and $-4.06 \mathrm{e}^{-3}$ close to Yb^{3+} ions. All calculations performed on an IBM 4331 computer with SHELX76 (Sheldrick, 1976); atomic scattering factors for Yb^{3+}, V^{5+} and O^{1-} (used for O in the decavanadate) from Cromer \& Mann (1968), those for water oxygen atoms ($\mathrm{O} W^{\prime}$) supplied internally by $S H E L X$.

Discussion. Final atomic positions and equivalent isotropic thermal parameters are listed in Table $1 . \ddagger$

[^1]© 1985 International Union of Crystallography

Interatomic distances and angles within the polyanion* show that its geometry is quite similar to that found in all the previously reported molecular structures for decavanadate salts (Evans, 1966; Swallow, Ahmed \& Barnes, 1966; Saf'yanov \& Belov, 1976; Saf'yanov, Kuz'min \& Belov, 1978a,b; Durif, Averbuch-Pouchot \& Guitel, 1980; Debaerdemaeker, Arrieta \& Amigo, 1982; Rivero et al., 1984). The decavanadate ion can be described as a section of cubic close-packed oxygen atoms with vanadium atoms in the octahedral holes. The intrinsic symmetry is mmm as in the structure of pascoite (Swallow et al., 1966). Least-squares best planes* for the assumed mmm symmetry, maximum atom deviations from this symmetry (χ^{2} value) and dihedral angles between these planes for the two inequivalent polyanions in diytterbium decavanadate were calculated with a modified version of the program by Ahmed \& Pippy (1966). Dihedral angles between least-squares mirror planes are 89.9 (1), 90.5 (1) and $89.9(1)^{\circ}$ for the first decavanadate, and $90.0(1), 90.1$ (1) and $90.2(1)^{\circ}$ for the second. χ^{2} values $\left[\Sigma(\Delta / \sigma)^{2}\right]$ for the first set of planes ($218 \cdot 3$, $111 \cdot 1$ and 8.4 , respectively) and for the second set ($1131.8,66.0$ and 9.7 , respectively) indicate that the decavanadate symmetry deviates significantly from mmm symmetry but that the inversion center is retained. Table 2 shows $\mathrm{V}-\mathrm{O}$ distances within both polyanions.

As can be seen in Fig. 1, each Yb^{3+} ion is surrounded by eight $\mathrm{O} W$ atoms. Central-ion-ligand distances are shown in the figure. Mean $\mathrm{Yb}(1)-\mathrm{O} W$ and $\mathrm{Yb}(2)-\mathrm{O} W$ distances [2.34 (4) and 2.32 (4) \AA] are of the order of the sum of the ionic radius of Yb^{3+} and the van der Waals radius of $\mathrm{O} W$ atoms.

The symmetry of the polyhedra was examined by applying the Lippard \& Russ (1967) test. The angles between intersecting trapezoidal best planes for $\left[\mathrm{Yb}(1)\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}$ and $\left[\mathrm{Yb}(2)\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}$ polyhedra are 84.6 (4) and 83.3 (2) ${ }^{\circ}$ respectively. On these grounds the structures are clearly intermediate cases between the ideal antiprism (77.4°) and the ideal octahedron $\left(90^{\circ}\right)$. The additional test based on the comparison of average ligand to trapezoidal best planes distances [$d s 1(1)$ $=0.281, d s 2(1)=0.283 \AA ; \quad d s 1(2)=0.313, d s 2(2)$ $=0.336 \AA]$ with the average ligand to best planes distances through the square faces of the antiprism $[d z 1(1)=0.072, d z 2(1)=0.031 \AA ; d z 1(2)=0.035$, $d z 2(2)=0.072 \AA$] allows us to describe the polyhedra as distorted antiprisms. This coordination is typical of rare-earth metal ions (Cunningham, Sands \& Wagner, 1967; Phillips, Sands \& Wagner, 1968; Burns \& Baybarz, 1972; Rivero et al., 1984). Deviation from ideal symmetry may be due to the involvement of coordinated water molecules in hydrogen bonds of various strengths.

[^2]Table 1. Fractional positional parameters and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

	x	${ }^{\prime}$	z	$U_{\text {eq }}{ }^{*}\left(\AA^{2}\right)$
$\mathrm{Yb}(1)$	0.0686 (1)	0.0241 (1)	0.1232 (1)	0.0306 (4)
OW(29)	0.0096 (6)	-0.1922 (6)	0.0752 (3)	0.061 (7)
OW(30)	0.2007 (6)	-0.1309 (6)	0.1689 (3)	0.068 (7)
OW(31)	-0.1017 (6)	-0.0577 (6)	0.1921 (2)	0.055 (6)
$\mathrm{OW}(32)$	0.1201 (6)	0.2060 (6)	0.0706 (3)	0.063 (7)
OW(33)	0.2558 (5)	0.1445 (6)	0.1685 (2)	0.047 (6)
OW'(34)	-0.0355 (6)	0.2147 (5)	0.1855 (2)	0.045 (6)
OW(35)	0.2614 (6)	-0.0516 (6)	0.0524 (3)	0.059 (7)
OW(36)	-0.1349 (6)	0.0625 (6)	0.0811 (3)	0.064 (7)
$\mathrm{Yb}(2)$	0.6227 (1)	0.4925 (1)	0.3804 (1)	0.0330 (4)
OW(37)	0.5383 (6)	0.3327 (7)	0.3105 (3)	0.076 (7)
OW'(38)	$0 \cdot 6600$ (6)	0.2923 (6)	0.4188 (3)	0.074 (7)
OW'39)	0.4041 (5)	0.4259 (6)	0.4279 (3)	0.057 (6)
OW(40)	0.7457 (7)	0.6652 (6)	0.3346 (3)	0.063 (7)
$\mathrm{OW}(4)$	0.8099 (6)	0.5449 (6)	0.4350 (3)	0.062 (7)
$\mathrm{OW} W^{\prime}(42)$	0.5513 (6)	0.6757 (6)	0.4499 (3)	0.066 (7)
OW(43)	0.8186 (6)	0.3874 (6)	0.3171 (3)	0.063 (7)
Ow(44)	0.4410 (7)	0.6077 (7)	0.3405 (2)	0.074 (7)
$\mathrm{OW}(45)$	0.6709 (6)	0.2579 (6)	0.2028 (2)	0.057 (6)
OW(46)	0.5140 (7)	0.0289 (7)	0.1734 (3)	0.098 (8)
OW(47)	0.0698 (6)	0.4797 (8)	$0 \cdot 1986$ (3)	0.082 (8)
OW'(48)	0.8411 (7)	0.6777 (6)	0.2177 (3)	0.076 (7)
Of(49)	0.8024 (8)	0.0885 (7)	0.3007 (3)	0.114 (9)
$\mathrm{O} W^{\prime}(50)$	0.2635 (7)	0.2508 (7)	0.2921 (3)	0.087 (8)
Ow(5)	0.0938 (6)	0.4940 (7)	0.3112 (2)	0.068 (7)
OH'(52)	0.534 (1)	0.897 (1)	0.2649 (5)	0.20 (2)
$V(1)$	0.5196 (1)	0.2819 (1)	0.0543 (1)	0.022 (1)
$V(2)$	0.3956 (1)	0.2776 (1)	-0.0619 (1)	0.025 (1)
$V(3)$	0.7791 (1)	0.4687 (1)	0.0783 (1)	0.026 (I)
$V(4)$	0.6637 (1)	0.4646 (1)	-0.0382 (1)	0.018 (1)
$V(5)$	0.4739 (1)	0.5367 (1)	0.1503 (1)	0.028 (1)
$\mathrm{O}(1)$	0.5192 (6)	0.8791 (6)	-0.0516 (2)	0.056 (6)
$\mathrm{O}(2)$	0.2914 (5)	0.7096 (5)	-0.0677 (2)	0.044 (5)
O(3)	0.4384 (5)	0.3517 (5)	0.1292 (2)	0.044 (6)
$\mathrm{O}(4)$	0.4146 (5)	0.7153 (4)	0.0311 (2)	0.029 (5)
$\mathrm{O}(5)$	0.6589 (5)	0.6590 (5)	-0.0248(2)	0.037 (5)
O(6)	0.4481 (5)	0.4989 (5)	-0.0495 (2)	0.028 (5)
$\mathrm{O}(7)$	0.6405 (6)	0.8820 (6)	0.0630 (3)	0.060 (6)
$\mathrm{O}(8)$	0.5116 (5)	0.7154 (5)	0.1346 (2)	0.039 (5)
O(9)	0.7791 (5)	0.6529 (5)	0.0727 (2)	0.037 (5)
O(10)	0.0642 (5)	0.5577 (6)	-0.0931(2)	0.054 (6)
$\mathrm{O}(11)$	0.6657 (5)	0.5041 (5)	0.1518 (2)	0.035 (5)
$\mathrm{O}(12)$	$0 \cdot 1829$ (5)	0.5613 (5)	0.0103 (2)	0.033 (5)
O(13)	0.2916 (5)	0.5623 (5)	0.1119 (2)	0.042 (6)
$\mathrm{O}(14)$	0.4071 (6)	0.5681 (7)	0.2180 (2)	0.067 (7)
$V(6)$	0.0668 (1)	0.1925 (1)	0.4304 (1)	0.028 (1)
$V(7)$	0.1476 (1)	0.7657 (1)	0.4558 (1)	0.026 (1)
$V(8)$	0.3423 (1)	0.0097 (1)	0.4208 (1)	0.034 (1)
$V(9)$	0.8670 (1)	0.9483 (1)	0.4626 (1)	0.024 (1)
$V(10)$	0.0967 (1)	0.9061 (1)	0.3508 (1)	0.034 (1)
$\mathrm{O}(15)$	0.0328 (6)	0.3449 (6)	0.4216 (2)	0.055 (6)
$\mathrm{O}(16)$	0.2654 (5)	$0 \cdot 1834$ (5)	0.4191 (2)	0.046 (6)
$\mathrm{O}(17)$	0.0507 (6)	0.0926 (5)	0.3589 (2)	0.045 (5)
$\mathrm{O}(18)$	0.9339 (5)	0.7783 (5)	0.4829 (2)	0.035 (5)
$\mathrm{O}(19)$	0.8664 (5)	0.1425 (5)	0.4621 (2)	0.033 (5)
$\mathrm{O}(20)$	0.0942 (5)	0.9814 (5)	0.4509 (2)	0.034 (5)
$\mathrm{O}(21)$	0.1811 (6)	0.6150 (6)	0.4660 (2)	0.049 (6)
$\mathrm{O}(22)$	$0 \cdot 1178$ (5)	0.7430 (5)	$0 \cdot 3805$ (2)	0.031 (5)
$\mathrm{O}(23)$	0.3331 (5)	0.8309 (5)	0.4400 (2)	0.035 (5)
$\mathrm{O}(24)$	0.0831 (6)	0.8515 (6)	0.2845 (3)	0.078 (7)
O(25)	0.2888 (6)	0.9443 (6)	0.3486 (2)	0.060 (6)
$\mathrm{O}(26)$	0.5124 (6)	1.0364 (6)	0.4053 (3)	0.074 (7)
O(27)	0.6932 (6)	0.9293 (5)	0.4911 (2)	0.048 (6)
$\mathrm{O}(28)$	0.88 .36 (5)	0.8942 (5)	$0 \cdot 3892$ (2)	0.040 (5)

The decavanadate polyanions and the rare-earth coordination polyhedra are less distorted in the title compound than in the isostructural yttrium compound, $\mathrm{Y}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ (Saf'yanov et al., 1978a).

Fig. 2 shows a stereoscopic view of the structure. Layers of decavanadate polyanions and Yb coordination polyhedra are linked solely through hydrogen bonds of interstitial water molecules. The structure is stabilized by a network of hydrogen bonds both within

Table 2. Interatomic distances (\AA)
$\mathrm{Yb}(1)$ decavanadate

$\mathrm{V}(1)-\mathrm{O}(1)$	1.612 (5)	$\mathrm{V}(4)-\mathrm{O}(4)$	1.926 (4)
$\mathrm{V}(1)-\mathrm{O}(2)$	1.826 (4)	$V(4)-O(5)$	1.885 (5)
$\mathrm{V}(1)-\mathrm{O}(3)$	1.825 (5)	$\mathrm{V}(4)-\mathrm{O}(6)$	$2 \cdot 130$ (5)
V (1)-O(4)	2.000 (4)	$\mathrm{V}(4)-\mathrm{O}\left(6^{\prime}\right)$	2.096 (5)
$\mathrm{V}(1)-\mathrm{O}(5)$	2.011 (5)	$\mathrm{V}(4)-\mathrm{O}(12)$	1.688 (4)
$\mathrm{V}(1)-\mathrm{O}(6)$	$2 \cdot 189$ (5)	$\mathrm{V}(4)-\mathrm{O}(13)$	1.688 (4)
$\mathrm{V}(2)-\mathrm{O}(4)$	1.996 (5)	$\mathrm{V}(5)-\mathrm{O}(3)$	1.845 (5)
$\mathrm{V}(2)-\mathrm{O}(5)$	2.008 (5)	$\mathrm{V}(5)-\mathrm{O}(6)$	$2 \cdot 329$ (5)
$\mathrm{V}(2)-\mathrm{O}(6)$	2.206 (5)	$\mathrm{V}(5)-\mathrm{O}(8)$	1.869 (5)
$\mathrm{V}(2)-\mathrm{O}(7)$	1.596 (5)	$\mathrm{V}(5)-\mathrm{O}(11)$	1.820 (5)
$\mathrm{V}(2)-\mathrm{O}(8)$	1.797 (5)	$\mathrm{V}(5)-\mathrm{O}(13)$	2.064 (5)
$\mathrm{V}(2)-\mathrm{O}(9)$	1.833 (5)	$\mathrm{V}(5)-\mathrm{O}(14)$	1.592 (5)
$\mathrm{V}(3)-\mathrm{O}(2)$	1.856 (4)		
$\mathrm{V}(3)-\mathrm{O}(6)$	2.346 (5)		
$\mathrm{V}(3)-\mathrm{O}(9)$	1.834 (5)		
$\mathrm{V}(3)-\mathrm{O}(10)$	1.578 (4)		
$\mathrm{V}(3)-\mathrm{O}(11)$	1.859 (4)		
$\mathrm{V}(3)-\mathrm{O}(12)$	2.019 (5)		
$\mathrm{Yb}(2)$ decavanadate			
$\mathrm{V}(6)-\mathrm{O}(15)$	1.585 (6)	V (9)-O(18)	1.938 (5)
$V(6)-O(16)$	1.825 (5)	$\mathrm{V}(9)-\mathrm{O}(19)$	1.909 (5)
$V(6)-O(17)$	1.823 (5)	$\mathrm{V}(9)-\mathrm{O}(20)$	$2 \cdot 109$ (5)
V (6)-O(18)	1.996 (5)	$\mathrm{V}(9)-\mathrm{O}\left(20^{\prime}\right)$	2.116 (5)
V (6)-O(19)	1.985 (5)	$\mathrm{V}(9)-\mathrm{O}(27)$	1.672 (5)
$\mathrm{V}(6)-\mathrm{O}(20)$	$2 \cdot 225$ (5)	$V(9)-O(28)$	1.695 (5)
$V(7)-O(18)$	1.990 (5)	$\mathrm{V}(10)-\mathrm{O}(17)$	1.858 (5)
V (7)-O(19)	1.969 (5)	$\mathrm{V}(10)-\mathrm{O}(20)$	2.331 (5)
$V(7)-\mathrm{O}(20)$	2.205 (5)	$\mathrm{V}(10)-\mathrm{O}(22)$	1.866 (5)
V (7)-O(21)	1.577 (6)	$\mathrm{V}(10)-\mathrm{O}(24)$	1.579 (6)
$V(7)-O(22)$	1.798 (5)	$\mathrm{V}(10)-\mathrm{O}(25)$	1.815 (5)
$V(7)-O(23)$	1.839 (5)	$\mathrm{V}(10)-\mathrm{O}(28)$	2.058 (5)
$V(8)-O(16)$	1.865 (5)		
$V(8)-O(20)$	2.334 (5)		
$\mathrm{V}(8)-\mathrm{O}(23)$	1.878 (5)		
$\mathrm{V}(8)-\mathrm{O}(25)$	1.842 (6)		
$\mathrm{V}(8)-\mathrm{O}(26)$	1.597 (5)		
$\mathrm{V}(8)-\mathrm{O}(27)$	2.027 (5)		

Fig. 1. $\mathrm{Yb}-\mathrm{O} W$ distances (\AA) in the $\mathrm{YbO} W$ polyhedra. E.s.d.'s are in parentheses.
the layers and between them. The existence of these bonds is indicated by the distances found between water molecules and their nearest neighbors. This fact is partially confirmed by the presence of peaks that could be interpreted as protons, in approximately the expected positions in the final difference map. The $\mathrm{O}-\mathrm{O} W$ and $\mathrm{O} W-\mathrm{O} W$ distances range between 2.606 (8) and $3 \cdot 164$ (8) \AA.

Analysis of the molecular structures of all the solved rare-earth decavanadates (Saf'yanov, Kuz'min \& Belov, 1979; Rivero et al., 1982, 1984) shows that, despite the different symmetries and unit cells adopted, all have a layered structure with weak links between layers, giving good cleavage in that direction. All rare-earth coordination polyhedra are distorted capped trigonal prisms but differences are found in coordination numbers. $\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$ and Sm are nine-coordinate, while the remaining rare-earth cations are eight-coordinate. The cation coordination polyhedra and the decavanadate ions are normally linked only by hydrogen bonds. The exceptions are $\mathrm{Ln}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 20 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}$) (Saf yanov et al., 1978b; Rigotti et al., 1981), in which neutral [$\left(\mathrm{Ln}_{2} .7 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{V}_{10} \mathrm{O}_{28}$] complexes occur.

Differences in the crystal structures and coordination polyhedra from La to Eu may be attributed to changes in the ionic radius according to Wells (1975), Moeller (1975) and Nassimbeni, Wright, van Niekerk \& McCallum (1979). However, the existence of two diyttrium decavanadate hydrates, one (Saf'yanov et al., $1978 a$) isostructural with $\mathrm{Yb}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ and the other (Rivero et al., 1982) isostructural with $\mathrm{Ln}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 25 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{Ln}=\mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}$) (Rivero et al., 1984), together with crystal-optical- and thermalproperties studies on the 24 -, 25 - and 28 -hydrates of rare-earth decavanadates (Glazyrin \& Ivakin, 1964; Ivakin, Ignat'eva \& Glazyrin, 1967), seem to contradict the above statement.

Thus it may be concluded that rare-earth decavanadates exhibit at least four crystallographic forms: $\mathrm{Ln}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 20 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}) ; \quad \mathrm{Ln}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 28 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}$); $\mathrm{Ln}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} .25 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{Ln}=\mathrm{Eu}$,

Fig. 2. Stereoscopic view of the structure down \mathbf{a}^{*}, with the b axis horizontal.
$\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Yb}, \mathrm{Y}) \quad$ and $\quad \mathrm{Ln}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ $(\mathrm{Ln}=\mathrm{Er}, \mathrm{Yb}, \mathrm{Tm}, \mathrm{Lu}, \mathrm{Y})$. Differences between them seem to be due to differences in the number of water molecules of crystallization rather than to changes in the ionic radius. In particular, the different number of water molecules of hydration seems to be responsible for cell distortion and the near doubling of one cell parameter in going from the 25 -hydrate to the 24 hydrate. In the second case, decavanadate anions belonging to consecutive layers become crystallographically nonequivalent.

The authors thank Dr P. Charpin for helpful discussions, and CONICET, CICPBA and SUBCYT (R. Argentina) for financial support.

References

Ahmed, F. R. \& Pippy, M. E. (1966). NRC Crystallographic Programs for the IBM 360 System. NRC-22. National Research Council of Canada, Ottawa.
Burns, J. H. \& Baybarz, R. D. (1972). Inorg. Chem. 11, 2233-2237.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Cunningham, J. A., Sands, D. E. \& Wagner, W. F. (1967). Inorg. Chem. 6, 499-503.
Debaerdemaeker, T., Arrieta, J. M. \& Amigo, J. M. (1982). Acta Cryst. B38, 2465-2468.
Durif, A., Averbuch-Pouchot, M. T. \& Guitel, J. C. (1980). Acta Cryst. B36, 680-682.

Evans, H. T. (1966). Inorg. Chem. 5, 967-977.
Glazyrin, M. P. \& Ivakin, A. A. (1964). Kristallografiya, 9, 927-928.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Ivakin, A. A., Ignat'eva, N. I. \& Glazyrin, M. P. (1967). Russ. J. Inorg. Chem. 12, 24-27.

Lippard, S. J. \& Russ, B. J. (1967). Inorg. Chem. 7, 1686-1688.
Moeller, T. (1975). Comprehensive Inorganic Chemistry, Vol. 4, pp. 24-25. Oxford: Pergamon Press.
Nassimbeni, L. R., Wright, M. R. W., van Niekerk, J. C. \& McCallum, P. A. (1979). Acta Cryst. B35, 1341-1345.
Phillips, T. II, Sands, D. E. \& Wagner, W. F. (1968). Inorg. Chem. 7, 2295-2299.
Rigotti, G., Punte, G., Rivero, B. E., Escobar, M. E. \& Baran, E. J. (1981). J. Inorg. Nucl. Chem. 43, 2811-2814.

Rivero, B. E., Rigotti, G., Punte, G. \& Navaza, A. (1982). Abstr. E9.1, Reun. Nac. de Fis. 1982, La Plata, Argentina, 6-10 December 1982.
Rivero, B. E., Rigotti, G., Punte, G. \& Navaza, A. (1984). Acta Cryst. C40, 715-718.
Saf'yanov, Yu. N. \& Belov, N. V. (1976). Dokl. Akad. Nauk SSSR, 227, 1112-1115.
Saf'yanov, Yu. N., Kuz'min, E. A. \& Belov, N. V. (1978a). Kristallografiya, 23, 697-702.
Saf'yanov, Yu. N., Kuz'min, E. A. \& Belov, N. V. (1978b). Dokl. Akad. Nauk SSSR, 242, 603-605.
Saf’yanov, Yu. N., Kuz'min, E. A. \& Belov, N. V. (1979). Kristallografiya, 24, 767-771.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Swallow, A. G., Ahmed, F. R. \& Barnes, W. H. (1966). Acta Cryst. 21, 397-405.
Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., pp. 988-989. Oxford: Clarendon Press.

Acta Cryst. (1985). C41, 820-823

$\mathrm{Zr}_{3} \mathbf{I r}$ with Tetragonal $\alpha-\mathbf{V}_{\mathbf{3}} \mathbf{S}$ Structure

By K. Cenzual and E. Parthé
Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

(Received 7 January 1985; accepted 1 February 1985)

Abstract

M_{r}=465.86, t I 32, I \overline{4} 2 m, a=10.788\) (2), $c=5.662(1) \AA, \quad V=658.9$ (2) $\AA^{3}, \quad Z=8, \quad D_{x}=$ $9.39 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=51.3 \mathrm{~mm}^{-1}$, $F(000)=1576, \quad T=293 \mathrm{~K}, \quad R=0.060$ for 490 independent reflections. $\mathrm{Zr}_{3} \mathrm{Ir}$ is isotypic to $\alpha-\mathrm{V}_{3} \mathrm{~S}$ belonging to a structure family comprising the structure types α - and $\beta-\mathrm{V}_{3} \mathrm{~S}, \mathrm{Ni}_{3} \mathrm{P}\left(\mathrm{Fe}_{3} \mathrm{P}\right), \mathrm{Ti}_{3} \mathrm{P}$ and $\mathrm{Hf}_{3} \mathrm{As}$. It is the first known example of a phase crystallizing with one of these structure types where both constituents are transition elements.

Introduction. There has been much interest in alloys of Zr with elements of the Fe, Co and Ni groups since many of these compounds are superconductors; $\mathrm{Zr}_{2} \mathrm{Rh}$
with CuAl_{2} type, for example, has a T_{c} of 11.3 K (McCarthy, 1971). The Zr -Ir phase diagram was studied by Kuprina \& Kuruyachaya (1974) who confirmed the existence of binary compounds at five different compositions. ZrIr_{3} crystallizes with the $\mathrm{Cu}_{3} \mathrm{Au}$ structure type (Dwight \& Bech, 1959) and ZrIr_{2} with the cubic Laves type MgCu_{2} (Dwight, 1961). At the equiatomic composition there are two structural variants; the high-temperature variant is known to crystallize with the CsCl-type structure (Eremenko, Semenova, Shtepa \& Kudrjavtsev, 1978). At the Zr -rich side of the phase diagram only two phases were confirmed, namely $\mathrm{Zr}_{2} \mathrm{Ir}$ with CuAl_{2}-type structure (McCarthy, 1971) and a phase at composition $\mathrm{Zr}_{3} \mathrm{Ir}$.

[^3]
[^0]: * Member of the Carrera del Investigador Cientifico, CIC, Provincia de Buenos Aires, Argentina.
 \dagger Member of the Carrera del Investigador Cientifico, CONICET, Argentina.

[^1]: \ddagger Lists of structure factors, anisotropic thermal parameters, best least-squares planes, a figure showing the arrangement of different V- and O-atom types, according to Evans (1966), and bond lengths and angles within the polyanion have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39959 (40 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * See deposition footnote.

[^3]: (c) 1985 International Union of Crystallography

